Odpowiedź:
Poziom A
[tex] \sqrt{9} = 3 \: \: bo \: \: {3}^{2} = 9 \\ \sqrt{121} = 11 \: \: bo \: \: {11}^{2} = 121 \\ \sqrt{10000} = 100 \: \: bo \: \: {100}^{2} = 10 \: 000[/tex]
[tex] \sqrt{81} = 9 \: \: bo \: \: {9}^{2} = 81 \\ \sqrt{64} = 8 \: \: bo \: \: {8}^{2} = 64 \\ \sqrt{144} = 12 \: \: bo \: \: {12}^{2} = 144[/tex]
[tex] \sqrt{2500} = 50 \: \: bo \: \: {50}^{2} = 2500 \\ \sqrt{169} = 13 \: \: bo \: \: {13}^{2} = 169[/tex]
poziom B
[tex] \sqrt{ \frac{1}{16} } = \frac{1}{4} \: \: bo \: \: {( \frac{1}{4} )}^{2} = \frac{1}{16} [/tex]
[tex] \sqrt{ \frac{36}{121} } = \frac{6}{11} \: \: bo \: \: {( \frac{6}{11} )}^{2} = \frac{36}{121} \\ \sqrt{ \frac{9}{25} } = \frac{3}{5} \: \: bo \: \: {( \frac{3}{5}) }^{2} = \frac{9}{25} [/tex]
[tex] \sqrt{ \frac{4}{49} } = \frac{2}{7} \: \: bo \: \: {( \frac{2}{7}) }^{2} = \frac{4}{49} [/tex]
[tex] \sqrt{ \frac{1}{25} } = \frac{1}{5} \: \: bo \: \: {( \frac{1}{5}) }^{2} = \frac{1}{25} [/tex]
[tex] \sqrt{ \frac{49}{100} } = \frac{7}{10} \: \: bo \: \: {( \frac{7}{10}) }^{2} = \frac{49}{100} [/tex]
[tex] \sqrt{ \frac{81}{144} } = \frac{9}{12} \: \: bo \: \: {( \frac{9}{12} )}^{2} = \frac{81}{144} [/tex]
[tex] \sqrt{ \frac{64}{100} } = \frac{8}{10} \: \: bo \: \: {( \frac{8}{10} )}^{2} = \frac{64}{100} [/tex]