Odpowiedź:
[tex]a) \: \: \sqrt[ 3]{ \frac{( - 2 {)}^{3} }{125} } - \frac{1}{ \sqrt[ 3]{ \frac{( - 2 {)}^{3} }{125} }} = \frac{ - 2}{5} - \frac{1}{ \frac{ - 2}{5} } = \frac{ - 2}{5} + \frac{1}{ \frac{2}{5} } = \frac{ - 2}{5} + \frac{5}{2} = \frac{ - 4}{10} + \frac{25}{10} = \frac{21}{10} = 2 \frac{1}{10} [/tex]
[tex]b) \sqrt[3]{ \frac{( - 2 {)}^{6} }{( - 3 {)}^{3} } } - \frac{1}{ \sqrt[3]{ \frac{( - 2 {)}^{6} }{( - 3 {)}^{3} } } } = \frac{( - 2 {)}^{2} }{ - 3} - \frac{1}{ \frac{( - 2 {)}^{2} }{ - 3} } = - \frac{4}{3} + \frac{1}{ \frac{( - 2 {)}^{2} }{3} } = - \frac{4}{3} + \frac{3}{4} = - \frac{7}{12} [/tex]
[tex]c)( \sqrt{169} - \sqrt{196} {)}^{2} - \frac{1}{( \sqrt{169 - \sqrt{196} {)}^{2} } } = (13 - 14 {)}^{2} - \frac{1}{(13 - 14 {)}^{2} } = ( - 1 {)}^{2} - \frac{1}{ {( - 1)}^{2} } = 1 - 1 = 0[/tex]
[tex]f) \sqrt{ \sqrt{6.25} - 0.25 } - \frac{1}{\sqrt{ \sqrt{6.25} - 0.25 }} = \sqrt{2.5 - 0.25} - \frac{1}{ \sqrt{2.5 - 0.25} } = \sqrt{2.25} - \frac{1}{ \sqrt{2.25} } = 1.5 - \frac{1}{1.5} = \frac{3}{2} - \frac{1}{ \frac{3}{2} } = \frac{3}{2} - \frac{2}{3} = \frac{5}{6} [/tex]