5. Oblicz pole sześciokąta foremnego, w którym:a) dłuższa przekątna ma długość 20cm, b) krótsza przekątna ma długość 9 cm C) dłuższa przekątna ma długość 14cm, D) krótsza przekątna ma długość 12cm​

Odpowiedzi 1

[tex]a)\\\\d=20\ cm\\\\d=2a\\\\2a=20\ \ |:2\\\\a=10\ cm\\\\pole\ szesciokata: \\\\P=\frac{a^2\sqrt{3}}{4}\\\\P=\frac{10^2\sqrt{3}}{4}=\frac{100\sqrt{3}}{4}=25\sqrt{3}\ cm^2[/tex]

[tex]b)\\\\f=9\ cm\\\\f= a\sqrt{3}\\\\ a\sqrt{3}= 9\ \ |: \sqrt{3} \\\\a= \frac{9}{\sqrt{3}}*\frac{\sqrt{3}}{\sqrt{3}}=\frac{9\sqrt{3}}{3}=3\sqrt{3}\ cm\\\\pole\ szesciokata: \\\\P=\frac{a^2\sqrt{3}}{4}\\\\P=\frac{ (3\sqrt{3})^2* \sqrt{3}}{4}=\frac{ 27\sqrt{3}}{4}=6,75\sqrt{3}\ cm^2[/tex]

[tex]c)\\\\d=14\ cm\\\\d=2a\\\\2a=14\ \ |:2\\\\a=7\ cm\\\\pole\ szesciokata: \\\\P=\frac{a^2\sqrt{3}}{4}\\\\P=\frac{7^2\sqrt{3}}{4}=\frac{49\sqrt{3}}{4}=12,25\sqrt{3}\ cm^2[/tex]

[tex]e)\\\\f=12\ cm\\\\f= a\sqrt{3}\\\\ a\sqrt{3}=12\ \ |: \sqrt{3} \\\\a= \frac{12}{\sqrt{3}}*\frac{\sqrt{3}}{\sqrt{3}}=\frac{12\sqrt{3}}{3}=4\sqrt{3}\ cm\\\\pole\ szesciokata: \\\\P=\frac{a^2\sqrt{3}}{4}\\\\P=\frac{ (4\sqrt{3})^2* \sqrt{3}}{4}=\frac{ 48\sqrt{3}}{4}=12\sqrt{3}\ cm^2[/tex]

answer img

Znasz odpowiedź? Dodaj ją tutaj!

Can't find the answer?

Zaloguj się z Google

lub

Zapomniałeś(aś) hasła?

Nie mam jeszcze konta, ale chcę je założyć Zarejestruj się

Wybierz język i region
How much to ban the user?
1 hour 1 day 100 years