Temat:
MatematykaAutor:
kobe16Utworzono:
1 rok temuOdpowiedź:
Szczegółowe wyjaśnienie:
a)
w(x) = x⁴+ 2x³ - 8x - 16
w(x) = x³(x + 2) - 8(x + 2)
w(x) = (x + 2)(x³ - 8)
w(x) = (x + 2)(x³ - 2³)
w(x) = (x + 2)(x - 2)(x² + 2x + 4)
b)
w(x) = 14x³- 7x²+ 4x - 2
w(x) = 7x²(2x - 1) + 2(2x -1)
W(x) = (2x - 1)(7x² + 2)
c)
w(x) = 2x³- 6x²+5x - 15
w(x) = 2x²(x - 3) + 5(x - 3)
w(x) = (x - 3)(2x² + 5)
d)
w(x) = x⁴ - 3x³ + x - 3
w(x) = x³(x - 3) + 1(x - 3)
w(x) = (x - 3)(x³ + 1)
w(x) = (x - 3)(x³ + 1³)
w(x) = (x - 3)(x +1)(x² - x + 1)
e)
w(x) = ½x³ - ⅙x²- 3x + 1
w(x) = ½x²(x - ⅓) - 3(x - ⅓)
w(x) = (x - ⅓)(½x² - 3)
w(x) = (x - ⅓)(√½x - √3)(√½x + √3)
f)
w(x) = ⅔x³ - 3x² - 6x + 27
w(x) =⅓ x²(2x - 9)- 3(2x - 9)
w(x) = (2x - 9)(⅓x² - 3)
w(x) = (2x - 9)(√⅓x - √3)(√⅓x + √3)
g)
w(x) = x³ - √2x² + √2x - 2
w(x) = x²(x - √2) + √2(x - √2)
w(x) = (x - √2)(x² + √2)
h)
w(x) = √3x⁴ +√6x³ +x² +√2x
w(x) = √3x³(x + √2) + x (x + √2)
w(x) = (x + √2)(√3x³ + x)
w(x) = (x +√2) * x(√3x² + 1)
Autor:
barneybell
Oceń odpowiedź:
5