[tex]a) \ \frac{125\cdot15}{3^{3}\cdot5^{4}} = \frac{5^{3}\cdot5\cdot3}{3^{3}\cdot5^{4}} = \frac{5^{4}\cdot3^{1}}{5^{4}\cdot3^{3}} =\frac{1}{3^{2}} = \underline{\frac{1}{9}}[/tex]
[tex]b) \ \frac{(3^{5})^{4}\cdot6^{4}}{9^{7}\cdot4^{2}} = \frac{3^{20}\cdot(3\cdot2)^{4}}{(3^{2})^{7}\cdot(2^{2})^{2}} = \frac{3^{20}\cdot3^{4}\cdot2^{4}}{3^{14}\cdot2^{4}} = \frac{3^{24}\cdot2^{4}}{3^{14}\cdot2^{4}} = 3^{24-14} = \underline{3^{10}}[/tex]
[tex]c) \ \frac{9^{3}\cdot4^{4}}{6^{10}} = \frac{(2^{2})^{3}\cdot(2^{2})^{4}}{(3\cdot2)^{10}} = \frac{3^{6}\cdot2^{8}}{3^{10}\cdot2^{10}} = \underline{\frac{1}{3^{4}\cdot2^{2}}}[/tex]
[tex]d) \ \frac{0,25^{3}:0,5^{3}}{5^{3}} = (\frac{0,25:0,5}{5})^{3} = (\frac{0,5}{5})^{3} = 0,1^{3}=\underline{0,001}[/tex]
[tex]e) \ \frac{(8^{5}\cdot4^{3})^{2}\cdot25^{2}}{10^{4}\cdot2^{10}} = \frac{((2^{3})^{5}\cdot(2^{2})^{4}\cdot(5^{2})^{2}}{(2\cdot5)^{4}\cdot2^{10}} = \frac{(2^{15}\cdot2^{6})^{2}\cdot5^{4}}{2^{4}\cdot5^{4}\cdot2^{10}}=\frac{(2^{21})^{2}\cdot5^{4}}{2^{14}\cdot5^{4}} =\frac{2^{42}}{2^{14}} = \underline{2^{28}}[/tex]
[tex]f) \ \frac{64^{2}\cdot36^{4}}{6^{3}\cdot2^{6}} =\frac{(2^{6})^{2}\cdot(6^{2})^{4}}{2^{6}\cdot6^{3}} = \frac{2^{12}\cdot6^{8}}{2^{6}\cdot6^{3}} = 2^{6}\cdot6^{5}=2^{6}\cdot(2\cdot3)^{5} = 2^{6}\cdot2^{5}\cdot3^{5} = \underline{2^{11}\cdot3^{5}}[/tex]
Wyjaśnienie
Wykorzystano własności potęg:
[tex]a^{n}\cdot a^{m} = a^{n+m}\\\\a^{n}:a^{m} = a^{n-m}\\\\(a\cdot b)^{n} = a^{n}\cdot b^{n}\\\\(a^{n})^{m} = a^{n\cdot m}[/tex]